

#E32
Q: What is the Symbolic Addressing Mode?

Symbolic Addressing in Program Mode

The vector comment field can be employed
for symbolic addressing. Certain rules are
enforced, primarily to extend program mode
to QuickLoad in AutoTest. This beta feature
is invoked by the SpScript keyword
‘AllowSymbolicAddressInComments’. The
following Rules & Regulations apply:

A. The first comment line (vector 0
comment) must start with the keyword
‘_PrgCmd’, indicating that comments
have program commands.

B. First line of program must be PAGE 0,

and second line of program must be
JMP 2. Note: these program
commands are automatically generated
(the aforementioned keyword does the
invocation).

C. Vector 2 comment must begin with

‘:BEGIN’ (which is a ‘label’ preceded
by the key delimiter ‘:’). Again, the
ETS2k generates it automatically.

D. Last vector comment indicates last

vector by the keyword ‘_LastVec’ –
inserted automatically. This, however,
is not a label; just a comment
convenient when the feature of
comment search is used. Similarly, the
StopVector will have the comment
‘_StopVector’ inserted.
(CommentSearch makes these
comments an operating convenience).

E. The comment for the last vector minus

1 must begin with ':END'. This label is
also generated automatically. Between

‘BEGIN’ and ‘END’ (inclusive) is the
program space accessible as references
by the various branch instructions of
the program.

By these five simple rules, of which
conformation and/or generation is automatic,
lies the foundation for applying program
mode to QuickLoad in AutoTest. In addition,
symbolic addressing must be adhered to
throughout. While we can run vector
programs where symbolic programming is
only adhered to partially, such programs
cannot be applied to AutoTest if QuickLoad
is desired.

The syntax for the program itself is simple
and summarized by the following rules:

A. Only branch instructions associated with

labels (JMP, CJMP, CALL, CCALL)
need to be considered for programming in
the comment field. The LOOP instruction
has by our new convention no label
associated with it. It is called LOOP@,
indicating looping to itself. If the user
desires the old convention, we have
provided equivalency by invoking the
keyword ‘UseOldProgramRules’.

B. To assign a symbolic label to a branch
instruction, just type a ‘$’ followed by ‘=’,
‘+’, ‘-‘, or LabelName. The ‘=’ signifies
branch to itself (e.g. waiting for a
condition), while ‘+’ and ‘-‘ signifies
relative addressing - that is, relative to the
location of the branch instruction (the +/-
will be followed by an integer which
determines the relative branch).

LabelName is any label
of any size, of which the
first 15 characters have
significance (i.e. 16th
character and characters
beyond are ignored).

C. The LabelName

associated with a vector
must appear in the
comment field at that
vector and be preceded
by the delimiter ‘:’. The
label name itself could
be any alphanumeric
string of which the first
fifteen characters have
significance.

The vector display to the
right illustrates the concept.

Note: the line with
‘_StopVec’, indicating the
Stop Vector, which is not
the same as Last Vector.
ETS2k warns the user of
this deviation from the
rules, but allows it to run
anyway. The warning
message will only appear
one time during the entire
session.

This comment file should be
saved as a .PRA file when
uploading vectors.

Also See:

Q'nApp #E7: Vector Looping
Q'nApp #E8: Pattern Matching
Q'nApp #E15: Special Script
Q'nApp #E33: MASK and
UNMSK
Q'nApp #E39: PRG file attachment
Q'nApp #E44: Vector files w/o
path

© 2006 HILEVEL Technology Inc

Before pressing Run:
 | | |
 Vector | | |
 Address | Program | | Comments
 (Hex) | | |
 | | Split Cycle |
==
 00000 | NOOP | 00000000 00000000 | _PrgCmd
 00001 | NOOP | 00000001 00000001 |
 00002 | LOADX 00 | 00000002 00000002 |
 00003 | LOAD 0FFF | 00000003 00000003 |
 00004 | NOOP | 00000004 00000004 |
 00005 | NOOP | 00000005 00000005 | just a comment
 00006 | NOOP | 00000006 00000006 |
 00007 | CJMP 0000 | 00000007 00000007 |$Alabel more comment
 00008 | JMP 0000 | 00000008 00000008 |$+3;jump to adr +3
 00009 | NOOP | 00000008 00000008 |
 0000A | NOOP | 00000008 00000008 | :Alabel
 0000B | NOOP | 00000008 00000008 |
 0000C | LOOP@ | 00000008 00000008 |
 0000D | NOOP | 00000008 00000008 |
 0000E | NOOP | 00000008 00000008 |
 0000F | NOOP | 00000008 00000008 |
 00010 | NOOP | 00000008 00000008 |

After pressing the Run button, the display changes to:
 | | |
 Vector | | |
 Address | Program | | Comments
 (Hex) | | |
 | | Split Cycle |
==
 00000 | PAGE 00 | 00000000 00000000 | _PrgCmd
 00001 | JMP 0002 | 00000001 00000001 |
 00002 | LOADX 00 | 00000002 00000002 | :BEGIN
 00003 | LOAD 0FFF | 00000003 00000003 |
 00004 | NOOP | 00000004 00000004 |
 00005 | NOOP | 00000005 00000005 | just a comment
 00006 | NOOP | 00000006 00000006 |
 00007 | CJMP 000A | 00000007 00000007 |$Alabel more comment
 00008 | JMP 000B | 00000008 00000008 |$+3;jump to adr +3
 00009 | NOOP | 00000008 00000008 |
 0000A | NOOP | 00000008 00000008 | :Alabel
 0000B | NOOP | 00000008 00000008 |
 0000C | LOOP@ | 00000008 00000008 |
 0000D | NOOP | 00000008 00000008 |
 0000E | NOOP | 00000008 00000008 | _StopVec
 0000F | NOOP | 00000008 00000008 | :END
 00010 | NOOP | 00000008 00000008 | _LastVec

Importantly, this real time compilation (perhaps more correctly
assembly) slows down the running process as a function of
several factors, primarily the number of lines of comments and the
total number of comments. While, the translation will only occur
as required (a subsequent pressing of the RUN button will skip
the compilation process), it slows down the run when a comment
is added or changed. We understand the essence of the element
of time during the debugging process, and have done our utmost
to mitigate this timing predicament. However, assembly is never
done instantly and the price to pay may warrant temporary
deviations from the norm. Do this by changing the
aforementioned keyword ‘_PrgCmd’ to ‘PrgCmd’, and the
software will behave as if no compilation existed. Then, when the
job nears completion, you can reintroduce ‘_PrgCmd’ and finish
off the job with a program well documented and easily enhanced
and modified.

