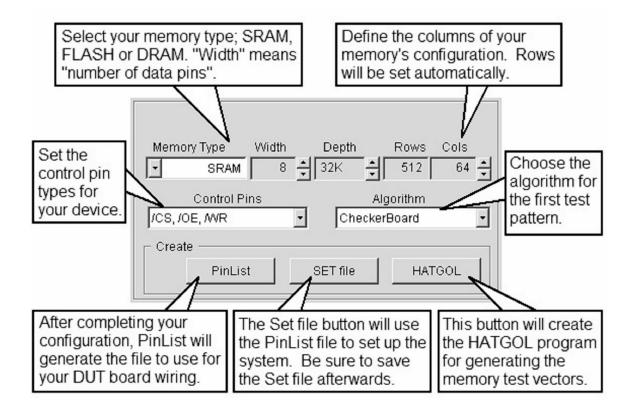


Q: How can I test memories with ETS2k?

Testing a Memory Under ETS2k

The Memory Test feature of the ETS is possible because of the tremendous versatility of the HiLevel proprietary gate arrays that control the ETS pin electronics. The powerful ETS2k software redefines the functions of these chips so that very deep memory devices can be tested using very few vectors. When using the ETS for Memory Test the software takes control of the vectors and the pattern generator program, so it is important that you not modify these resources manually.

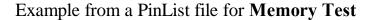

It is very important to plan ahead for Memory Test, particularly when building up your DUT board. This is due to the way in which the pin electronics boards are assigned for specific purposes. PE board #1 (pins 1-32) is used for the memory address pins of your device. ETS2k will control these pins like a counter, sequencing through memory addresses as part of a pattern generator loop. PE board #2 (pins 33-64) will function as the data I/O pins to the memory device under test. PE board #3 (pins 65-96) provides control pin functions for your memory device, such as output enables, chip enables and read/write pins.

You can use the PinList import feature to assign your pins and names, or do it manually from the Main Test setup window. Just be sure to assign pins according to their types as illustrated in the above paragraph, and in accordance with your DUT board wiring. Here are the main steps in preparation. You can also use the ETS2k User Manual for more assistance.

Begin the setup by checking the Memory Test box on the "Modes" area of the Main Setup window:

Now the Memory Setup window appears in the lower right corner of the Main Setup window. This is where you will define the basic characteristics of your device and also access other Memory test features.

There are three suggested Control Pin configurations. Don't worry if none match your configuration exactly; you can edit the PinList file to match your needs.


Control Pins	
/CS, /OE, /WR	•
ICS, IOE, IWR	
/CS1, CS2, /OE, /WR /CS, /OE, /CLK, /WR	
/CS, /OE, /CLK, /WR	

The ETS2k software supports these standard algorithms. Just use the scroll buttons to select one for your first test. Later, you can select different ones to create more vector sets.

Algorithm	
CheckerBoard	-
WalkingOnes	~
WalkingZeros	
MarchingOnes	=
MarchingZeros	
Sequential Address	*

The PinList shown on the next page is the result of clicking the PinList button after your configuration has been defined. Save this file after you have typed in your DUT pin numbers and made any other changes. Then press the Set file button to import the PinList.

; SysCh	Pin#	Name	Grp	Туре	
16	?	ADR15	1	SMA	; DISCONNECTED
15	?	ADR14	1	SMA	Λ
14	?	ADR13	1	SMA	
13	?	ADR12	1	SMA	In our example,
12		ADR11	1	SMA	
11	?	ADR10	1	SMA	channel 16 is
10	?	ADR9	1	SMA	disconnected
9	?	ADR8	1	SMA	because Address
8	?	ADR7	1	SMA	
7	?	ADR6	1	SMA	bit 15 is not needed
6	?	ADR5	1	SMA	for a 32K depth.
5	?	ADR4	1	SMA	ior a bert deptil.
4	?	ADR3	1	SMA	
3	?	ADR2	1 1	SMA	
3 2 1	?	ADR1	1	SMA	a general state of the second state of the second state.
1	?	ADRØ	1	SMA	You will set leading
40	?	DATA7	2	SMD	and trailing edges
39	?????????	DATA6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SMD	for the write pulse.
38	?	DATA5	2	SMD	If your write pin is
37	?	DATA4	2	SMD	-
36	?	DATA3	2	SMD	active hi, then use
35	?	DATA2	2	SMD	RZ format.
34	?	DATA1	2	SMD	
33	?	DATAØ	2	SMD	
65	?	/WRITE	3	I	; make this R1 signa
66	? ? ?	/OE	4	I	
67	?	/cs	5	I	
\$DISCON	NECT PI	N 16			

The pin TYPEs SMA and SMD in the PinList file mean "Split Memory Address" and "Split Memory Data", as can be seen as the Pin Direction in the Pin Setup area of the Main Setup window. Do not change these settings.

You will also notice that for the Address and Data groups (groups 1 and 2) that the timing section of the Main Setup window has changed. The "Trailing Edge" field is now called "Memory Edge".

Now you can define your DUT power supplies, logic levels, and test rate. You will see that the sequencing mode is set to Memory Test. Do not change this setting. Save your Set file for future loading.

Timing —			
Strobes	Dly	Value	Unit
Leading	5	4 :	% -
Memory Edge		75	% -

Ru	in Setup		
Test Rate	Test ExtClock		
Freq (MHz) 10.000	Clock Source	Internal	•
Period (ns) 100.000	Sequencing	MemoryTest	-

Select a Test Pattern from the Algorithm box in the MemoryTest Setup section. For your first pattern, it is common practice to use CheckerBoard.

Algorithm	
CheckerBoard	•
WalkingOnes	~
WalkingZeros	
MarchingOnes	=
MarchingZeros	
Sequential Address	*

If you open the Vectors window, you can see your assigned pin groups displayed. You'll also see random, unmeaningful data as the vectors (see below). Press the HATGOL button on the Memory Test section of the Main Setup window. This action will cause the Comment field of the Vectors window to be filled with the HATGOL statements necessary to translate vectors for the selected test pattern, as can be seen in example on the next page. Refer to the HATGOL manual for details about these instructions and commands in the Comment field.

Vector Address (Hex)	Program	/ W R I// TOC Address Data EES	Comments
000000 000001 000002 000003 000004 000005 000006 000007 000008 000008 000008 000008 000008 000000	NOOP NOOP NOOP NOOP NOOP NOOP NOOP NOOP	????? FFFX ?? XF 1 Z 1 ?Z?? FFXX ?? FX Z 1 ?Z?? XFFF ?? FF Z Z ??Z? XXFF ?? FF Z Z ??Z? XFFF ?? FF Z Z ??Z? FXFX ?? FF Z Z ??Z? FXFX ?? FF Z Z ?XZ? FXFX ?? FF Z Z ?XZ? FXFX ?? FF Z Z ?XZ? FXFX ?? FF Z Z ?XZZ FXFX ?? FF Z Z ?Z? FXXF ?? FF Z Z ?Z?? FXXF ?? FF Z Z ?Z?? FXXF ?? FF Z Z ?Z?? FXFF ?? FF Z 1 ZZ?? FXXF ?? FF <td></td>	

Vector Window Before HATGOL Button is Pressed

In the vectors Comment field, some definitions may need to be modified prior to translating, i.e. 'WRITE', 'READ', and 'default'. Each of these is preceded with the '#define' statement. Initially these will be all ones. The order of bits for these binary values is determined by the 'consign' statement, which is used to assign the appropriate control pins to the 'Control' group referenced by the HATGOL 'control' statement. For example, if groups /WRITE, /OE, and /CS (all active low) are groups 3, 4, and 5 respectively, and are 'consigned' as 3 4 5, then modify the 'WRITE' definition from 0b_111 to 0b_010 and

modify the 'READ' definition fomr 0b_111 to 0b_100 ('0b_' denotes binary). Reference the HATGOL Manual for more detailed information.

Vector Address Program (Hex)	/ W R I / / T O C Address Data E E S	Comments
000000 NOOP 000001 NOOP 000002 NOOP 000003 NOOP 000004 NOOP 000005 NOOP 000006 NOOP 000007 NOOP 000008 NOOP 000007 NOOP 000008 NOOP 000010 NOOP 000011 NOOP 000012 NOOP 000013 NOOP 000014 NOOP 000015 NOOP 000016 NOOP 000017 NOOP 000018 NOOP 000019 NOOP 0000100 NOOP 000011	?Z?? FFFX ?? XF 1 Z ?Z?? FFXX ?? FY Z Z ?Z?? XFFF ?? FF Z Z ?Z?? XFFF ?? FF Z Z ?Z?? FXXF ?? FF Z Z ???Z FXFF ?? FF Z Z ???Z FXFF ?? FF Z Z ???Z FXFF ?? FF Z Z ???Z FXF ?? FF Z Z ???? FFFX ?? FF Z Z ???? FFX ?? F Z Z ???? FFX ?? F Z	HATGOL MemoryTest Checkerboard jmp \$Start consign 3 4 5 #conf width 8 #define depth 32K-1 #define repeats 512/2-1 #define repeats 512/2-1 #define mREAD 0b_100 #define default 0b_111 #define default 0b_111 #define Complement ones control default all Control default all control WRITE, addr = @ + 1. DATA = ~@ loop PageSize control WRITE, addr = @ + 1. DATA = ~@ return :Read_2_Pages loop rd_count jmp control READ, compare InitData, addr = @ + 1, jmp -1

Vector Window After HATGOL Button is Pressed

After making any modifications, merely press the 'Translate' button labeled [HT] on the main toolbar (top of window). This action will cause the HATGOL to be translated into vectors, as seen on the next page. The HATGOL program can be edited at any time for changes, but you must hit the "HT" button again to translate your changes into vectors.

Vector Address (Hex)	Program	/ W R I / / T O C Address Data E E S	Comments
000000 00001 000012 00003 00003 00005 00006 00006 000007 000008 000000 000000 000000 000000 000000	NOOP NOOP	0000 XXXX 00 XX 1 1 0000 XXXX 00 <td>HATGOL MemoryTest Checkerboard jmp %Start consign 3 4 5 #conf width 8 #define depth 32K-1 #define repeats 512/2-1 #define repeats 512/2-1 #define wRITE 0b_100 #define default 0b_111 #define Gomplement 0xff control default all :Write_2_Pages</td>	HATGOL MemoryTest Checkerboard jmp %Start consign 3 4 5 #conf width 8 #define depth 32K-1 #define repeats 512/2-1 #define repeats 512/2-1 #define wRITE 0b_100 #define default 0b_111 #define Gomplement 0xff control default all :Write_2_Pages
000021 000022 000023 000024 000025 000026	LOADX 00 LOAD 003F DEC LOOP@ LOADX 00 LOAD 003F	0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1 A1A1 XXXX 80 XX 0 1 0 0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1	loop PageSize control WRITE, addr = @ + 1, DATA = ~@ loop PageSize
000027 000028 000029 00002A 00002B 00002C	DEC LOOP@ RET NOOP NOOP LOADX 00	0000 XXXX 00 XX 1 1 1 A1A1 XXXX B0 XX 0 1 0 0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1 0000 XXXX 00 XX 1 1 1	control WRITE, addr = @ + 1, DATA = ~@ return :Read_2_Pages loop rd count jmp
00002D 00002E 00002F	LOAD 001F DEC CJMP 002E	0000 XXXX 00 XX 1 1 1 A1A1 XXXX ZZ 00 1 0 0 A1A1 XXXX ZZ FF 1 0 0	control READ, compare InitData, addr = @ + 1 control READ, compare Complement, addr = @ + 1, jmp -1 ♥ ◀

Vector Window After HT Translate Button is Pressed

Memory Test vectors are actually more like instructions for the HiLevel pin electronics, so at first they do not look like what you may expect. When you click your RUN button, the actual (and more meaningful) vectors can be seen in the Analysis window, where you@l see actual memory addresses and data. By using this Algorithmic Instruction method, very large memories can be tested with just a few hundred vectors. After creating these vectors, be sure to upload the TRN and PRG files along with the Set file.

Also See: QnApp #E1: PinList Function QnApp #E36: Memory Test Functional Description QnApp #E37: Memory Test: Flash QnApp #E43: Memory BitMap