Q: How can I test memories with Presto?

Testing a Memory Under Presto

The Memory Test feature of the ETS is possible because of the tremendous versatility of
the HiLevel proprietary gate arrays that control the ETS pin electronics. The powerful
Presto software redefines the functions of these chips so that very deep memory devices
can be tested using very few vectors. When using the ETS for Memory Test the software
takes control of the vectors and the pattern generator program, so it is important that you
not modify these resources manually.

It is very important to plan ahead for Memory Test, particularly when building up your
DUT board. This is due to the way in which the pin electronics boards are assigned for
specific purposes. PE board #1 (pins 1-32) is used for the memory address pins of your
device. Presto will control these pins like a counter, sequencing through memory
addresses as part of a pattern generator loop. PE board #2 (pins 33-64) will function as
the data 1/0 pins to the memory device under test. PE board #3 (pins 65-96) provides
control pin functions for your memory device, such as output enables, chip enables and
read/write pins.

You can use the PinList import feature to assign your pins and names, or do it manually
from the Main Test setup window. Just be sure to assign pins according to their types as
illustrated in the above paragraph, and in accordance with your DUT board wiring. Here
are the main steps in preparation. You can also use the Presto User Manual and the
HATGOL manual for more assistance.

Begin the setup by checking the Memory

Modes
Test box on the "Modes" area of the Main
Setup window:
Memory
v Test

-

Now the Memory Setup window appears in the lower right corner of the Main Setup
window. This is where you will define the basic characteristics of your device and also

access other Memory test features.

Select your memory type; SRAM,
FLASH or DRAM. "Width" means
"number of data pins".

Define the columns of your
memory's configuration. Rows
will be set automatically.

kT { /
Set the Memory TYpe \Width Depth Rows Cols
! = = a 2| | |Choose the
control pin N | SRaM | 8 Z“32K Z“ 512 | o4 ZI,. ot
gl algorithm for
types sl Contral Pins Algorithm dthe first test
your device.1 | [ics joE, mR | [checkeroard -| | |pattern.
Create
{ PinList | SET file | HATGOL |
y y i -

\\

After completing your The Set file button will use || This button will create

configuration, PinList will ||the PinList file to set up the | |the HATGOL program

generate the file to use for [| system. Be sure to save | [for generating the

your DUT board wiring. the Set file afterwards. memory test vectors.
There are three suggested Control Pin Control Pins

configurations. Don't worry if none match
your configuration exactly; you can edit the
PinL.ist file to match your needs.

The Presto software supports these
standard algorithms. Just use the scroll
buttons to select one for your first test.
Later, you can select different ones to
create more vector sets.

|iCs, I0E, VR

El

/IC81, CS82, /IOE, WR
/CS, /OE, ICLK, IWR

Algorithm
CheckerBoard

WalkingOnes
WalkingZeros
MarchingOnes
MarchingZeros
Sequential Address v

5 (L«

=y

1

The PinList shown on the next page is the result of clicking the PinList button after your
configuration has been defined. Save this file after you have typed in your DUT pin
numbers and made any other changes. Then press the Set file button to import the PinList.

;SysCh Pin# Name Grp
16 ? ADR1S 1
15 ? ADR14 1
14 ? ADR13 1
13 ? ADR12 1
12 ? ADR11 1
1. T ADR1G 1
18 ? ADR9 1
9 ? ADRS 1
8 ? ADR7 1
7 ? ADRGE 1
6 ? ADRS 1
= ? ADR4 1
4 ? ADR3 1
3 4 ADR2 1
2 7 ADR1 <
1 ? ADRB 1
48 ? DATA7 2
39 ? DATAG 2
38 (4 DATAS 2
37 ? DATA4 2
36 ? DATAS 2
35 ? DATAZ 2
34 ? DATAL 2
33 ? DATAB 2
65 ? /WRITE 3
66 ? /OE 4
67 ? /CS S
$DISCONNECT PIN 16

SMA ; DISCONMNECTED

A In our example,

SMA channel 16 is

S disconnected

MA because Address
SMA bit 15 is not needed
o | fora 32K depth.

SMA You will set leading

SMD for the write pulse.
sMD If your write pin is
=MD active hi, then use
SMD RZ format.

and trailing edges

; make this R1 signal

Example from a PinList file for Memory Test

The pin TYPEs SMA and SMD in the
PinList file mean "Split Memory Address"
and "Split Memory Data", as can be seen as
the Pin Direction in the Pin Setup area of
the Main Setup window. Do not change
these settings.

You will also notice that for the Address
and Data groups (groups 1 and 2) that the
timing section of the Main Setup window
has changed. The "Trailing Edge" field is
now called "Memory Edge".

Now you can define your DUT power
supplies, logic levels, and test rate. You
will see that the sequencing mode is set to
Memory Test. Do not change this setting.
Save your Set file for future loading.

Pin Direction [SplitMemadr |

Stimulus Format |VO 4
Split 11O

e

- Split Memadr =
Pins... | 16, 19 Split Memdata v

Timing
Strobes Dly Value Unit
Leading [_S'j[4 —_|—| % ~|
Memory EdgeiTj[75 —_|—| [% ~|
Run Setup
Test Rate Test ExtClock I

Freq MH2) [10000 | ciock source [Intemal -
Period (ns) 100.000 Sequencing |MemornyTest

Select a Test Pattern from the Algorithm Algorithm

box in the MemoryTest Setup section. For CheckerBoard _-_]

your first pattern, it is common practice to WalkingOnes A

use CheckerBoard. WalkingZeros
TIMarchingOnes

1

MarchingZeros
Sequential Address v

If you open the Vectors window, you can see your assigned pin groups displayed. You'll
also see random, unmeaningful data as the vectors (see below). Press the HATGOL
button on the Memory Test section of the Main Setup window. This action will cause the
Comment field of the Vectors window to be filled with the HATGOL statements
necessary to translate vectors for the selected test pattern, as can be seen in example on
the next page. Refer to the HATGOL manual for details about these instructions and
commands in the Comment field.

:J
¥4
Vector W
Address Program R
{Hex) 122 2 Comments
T Q€
Address Data E E S
4]
000000 |ROOP PZTPFERX Y¥E 1Z 1 ~
000001 |NOOP LR FEXR P iEX-ZE 1
000002 |ROOP ?2Z27?7? XFFF ?? FF Z Z 0
000003 |ROOP (. A7 A0 0 6 Y 45) D S A A
000004 |ROOP oA A 1) S A D DR AR AR S
000005 |ROOP 2272 FFEX ?? Xp Z Z Z
000006 |NOOP ZL1L FAEY vREOXE 127
000007 |NOOP ?AZZ FFFF ?? FF Z 1 Z
000008 |ROOP TRIL FFXX ?*¥ FE Z Z Z
000009 |ROOP (7 ATA db 00 10 S) T R A A
00000A |ROOP 0 EERE PREECE G]
0000D0B |NOOP P47 S T 4 T D A) i A B
00000C |HOOP ZZ37'FEXF ?? FE L+ O 1
00000D |ROOP ZZ?Z FFXX ?? FF Z 0 1
000DDE |ROOP TZARNERE 22 EE T 10
0000D0F |ROOP 2292 -FEEX P cBRCZE 1:Z
000010 |NOOP PPV XFEX YRR X L

Vector Window Before HATGOL Button is Pressed

In the vectors Comment field, some definitions may need to be modified prior to
translating, i.e. 'WRITE', 'READ', and 'default’. Each of these is preceded with the ‘#define’
statement. Initially these will be all ones. The order of bits for these binary values is
determined by the 'consign’ statement, which is used to assign the appropriate control pins
to the 'Control' group referenced by the HATGOL 'control' statement. For example, if
groups /WRITE, /OE, and /CS (all active low) are groups 3, 4, and 5 respectively, and are
‘consigned’ as 3 4 5, then modify the 'WRITE" definition from Ob_111 to Ob_010 and

modify the 'READ’ definition fomr Ob_111 to Ob_100 ('0Ob_' denotes binary). Reference the
HATGOL Manual for more detailed information.

P =
Vector 0]
Address Progran R
(He=) T2 Comments
T0C
Address Data E E S
=
000000 |NOOP FZVLFEFX YXE 1°Z 1 HATGOL MemoryTest Checkerboard -
000001 |NOOP ?Z?? FFXX 7?2 FX Z Z 1
000002 |NOOP ?Z?? XFFF ?? FF Z Z 0 jnp $Start
000003 |NOOP ?Z?Z FXXF ?? FF Z Z Z consign 3 4 §
000004 |NOOP TV XFEE 72 FE Z°E #conf width 8
000005 |NOOP 222 . FFEX Y XE - Z Z Z #define depth 32K-1
000006 |NOOP ZZ7Z2 FXFX ?F XF 1.Z Z #define PageSize 64-1
000007 |NOOP FAZZ PFFE 7 FE-Z 1. Z #define repeats 512/2-1
000008 |NOOP IRTZ PEXX V0 BEZ Z K #define rd_count 64/2-1
000009 |NOOP ?Z?? FXXF ?? FF Z Z Z #define WRITE 0b_010
000004 |NOOP 2222 BREEX ?7-FF Z°Z 1 #define READ 0b_100
00000E |NOOP ZZ2? FXFE ZZ FE-Z 1.7 #define default 0Ob_111
00000C |NOOP ZZ?? FFXF ?7? FF 1 0 1 #define InitData zeroes
00000D |NOOP ZZ?Z FFXX 7?7 FF Z 0 1 #define Complement ones
00000E |NOOP Z0 FEXX 27 FX - Z 1 °Z
00000F |NOOP 7?22 FEEX 7?7 FF Z 1. Z control default all
000010 |NOOP 20 XFFX. P BEZ K
000011 |NOOP ZZ9L-FXFX ?Z- XX 1-Z-Z
000012 |NOOP 12272-BRFE ?7-XE 1 Z:Z
000013 |NOOP L XXFX P FX Z 17
000014 |NOOP RZTL PEFE ZZ-FE 7.7 T
000015 |NOOP ??ZZ FFXF ?? FX Z 0 Z
000016 |NOOP ¥eZZ FFXX 2 -AF: Z:Z-Z
000017 |NOOP 2227 FXXX MW FE-Z 7 7
000018 |NOOP ZiZ FREXX 3 XB 72 7. %
000019 |NOOP PZIZ-PPEX 11 FEZ- 77
000014 |NOOP 2ZZ72 FFXX ?7-FE Z Z:Z
00001E |NOOP ZZ?? FFXF ?7? XF 0 Z 1
00001C |NOOP WL FFEX ZZFX 1 1°Z
00001D |NOOP P27 XXFX 7 XN Z Z Z
00001E |NOOP Z?PV FFFX . FE Z:Z 1
00001F |NOOP 7922 XFFE 7 XF Z Z°Z
000020 |NOOP ZZ3 7 . FEFE. 33 FX 2 17 :Urite_2_Pages
000021 |NOOP 7ZB? FXXF ?? FL 0 1 1 loop PageSize
000022 |NOOP ?2Z72-FFPE ?7-FX 0 1 Z
000023 |NOOP ?ZZ? FFFF Z? XX 1 Z Z
000024 |NOOP Z2VL FEXX ?Z-XX 1. 1 °Z control WRITE, addr = @ + 1, DATA = ~@
000025 |NOOP VAL FXEX. VXN T T T loop PageSize
000026 |NOOP RFEXFE ?%Z2.XF Z 2 Z
000027 |NOOP Z?27 XXXX M EE-Z07Z 1
000028 |NOOP 2?2?72 FFXF ?? FF 1 Z Z control WRITE, addr = @ + 1, DATA = ~@
000029 |NOOP MW FFXX Z? FX Z Z Z return
000024 |NOOP 2Z232-FXXE ?9-FFE 1 1 0
00002E |NOOP Z?ZZ FFFX ?Z FE.Z 7. Z :Read_2_Pages
00002C |NOOP LZAL FEFE W-EX Z°7 1 loop rd_count jmp
00002D |NOOP LN XEXX. 79 EX -2 1 Z
00002E |NOOP 2Z XXX ZV-FE Z 2 Z control READ, compare InitData, addr = @ + 1
00002F |NOOP 2237 XFXX 7ZZ XF Z Z Z control READ., compare Complement, addr = @ + 1, jmp -1 ~
[|] 2l 2 tl

Vector Window After HATGOL Button is Pressed

After making any modifications, merely press the Translate' button labeled [HT] on the
main toolbar (top of window). This action will cause the HATGOL to be translated into
vectors, as seen on the next page. The HATGOL program can be edited at any time for
changes, but you must hit the "HT" button again to translate your changes into vectors.

:_]
Fd
Vector v
Address Program R
(Hex) T £ 2 Comments
TOE
Address Data E E S
=
000000 |NOOP 0000 XXXX 00 XX 1 1 1 HATGOL MemoryTest Checkerboard a
000001 |NOOP 0000 XXXX 00 XX 1 1 1
000002 |JHP 0100 0000 XXEX 00 XX 1 1 1 jmp $Start
000003 |NOOP 0000 XXXX 00 XX 1 1 1 consign 3 4 §
000004 |NOOP 0000 XXEX 00 XX 1 1 1 #conf width 8
000005 |NOOP 0000 XXEX 00 XX 1 1 1 #define depth 32K-1
000006 |NOOP 0000 XXEX 00 XX 1 1 1 #define PageSize 64-1
000007 |NOOP 0000 XXEX 00 XX 1 1 1 #define repeats 512/2-1
000008 |NOOP 0000 XXEX 00 XX 1 1 1 #define rd_count 64-/2-1
000009 |NOOP 0000 XXEX 00 XX 1 1 1 #define WRITE 0b_010
000004 |NOOP 0000 XXEX 00 XX 1 1 1 #define READ 0b_100
00000E |NOOP 0000 XXX 00 XX 1 1 1 #define default 0b_111
00000C |NOOP 0000 XXEX 00 XX 1 1 1 #define InitData 0
00000D |NOOP 0000 XXEX 00 XX 1 1 1 #define Complement O0xff
00000E |NOOP 0000 XXEX 00 XX 1 1 1
00000F |NOOP 0000 XXEX 00 XX 1 1 1 control default all
000010 |NOOP 0000 XXXX 00 XX 1 1 1
000011 |NOOP 0000 XXXX 00 XX 1 1 1
000012 |NOOP 0000 XXEX 00 XX 1 1 1
000013 |NOOP 0000 XXXX 00 XX 1 1 1
000014 |NOOP 0000 XXXX 00 XX 1 1 1
000015 |NOOP 0000 XXEX 00 XX 1 1 1
000016 |NOOP 0000 XXXX 00 XX 1 1 1
000017 |NOOP 0000 XXXX 00 XX 1 1 1
000018 |NOOP 0000 XXXX 00 XX 1 1 1
000019 |NOOP 0000 XXXX 00 XX 1 1 1
000014 |NOOP 0000 XXXX 00 XX 1 1 1
00001B |NOOP 0000 XXXX 00 XX 1 1 1
00001C |NOOP 0000 XXXX 00 XX 1 1 1
00001D |NOOP 0000 XXXX 00 XX 1 1 1
00001E |NOOP 0000 XXXX 00 XX 1 1 1
00001F |NOOP 0000 XXXX 00 XX 1 1 1
000020 |NOOP 0000 XXXX 00 XX 1 1 1 ‘Write_2_Pages
000021 |LOADX 00 0000 XXXX 00 XX 1 1 1 loop PageSize
000022 |LOAD 003F 0000 XXEX 00 XX 1 1 1
000023 |DEC 0000 XXXX 00 XX 1 1 1
000024 |LOOP@ 4121 XXXX BO XX 0 1 0 control WRITE, addr = @ + 1, DATA = ~@
000025 |LOADX 00 0000 XXXX 00 XX 1 1 1 loop PageSize
000026 |LOAD 003F 0000 XXXX 00 XX 1 1 1
000027 |DEC 0000 XXXX 00 XX 1 1 1
000028 |LOOP@ 4121 XXX BO XX 0 1 0 control WRITE, addr = @ + 1, DATA = ~@
000029 |RET 0000 XXXX 00 XX 1 1 1 return
000024 |NOOP 0000 XXEX 00 XX 1 1 1
00002B |NOOP 0000 XXXX 00 XX 1 1 1 :Read_2_Pages
00002C |LOADX 00 0000 XXXX 00 XX 1 1 1 loop rd_count jmp
00002D |LOAD 001F 0000 XXXX 00 XX 1 1 1
00002E |DEC AlAl XXXX ZZ 00 1 0 O control READ, compare InitData, addr = @ + 1
00002F |CIMP 002E AlAl XXXX ZZ FF 1 0 O control READ, compare Complement, addr = @ + 1, jmnp -1 ~
J I | R T i | KT |) K o

Vector Window After HT Translate Button is Pressed

Memory Test vectors are actually more like instructions for the HiLevel pin electronics, so
at first they do not look like what you may expect. When you click your RUN button, the
actual (and more meaningful) vectors can be seen in the Analysis window, where you’ll
see actual memory addresses and data. By using this Algorithmic Instruction method,
very large memories can be tested with just a few hundred vectors. After creating these
vectors, be sure to upload the TRN and PRG files along with the Set file.

Also See:
QnApp #P1: PinList Function

QnApp #P36: Memory Test Functional Description

QnApp #P37: Memory Test: Flash
QnApp #P43: Memory BitMap

